
RKeOps v2: Kernel operations with Symbolic Tensors on the GPU
in R

Amélie Vernay1,∗ Benjamin Charlier1,† Ghislain Durif2,‡ Chloe Serre-Combe1,§

1 IMAG, Université de Montpellier, CNRS UMR 5149, Montpellier, France
2 LBMC, ENS de Lyon, CNRS UMR 5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France

Abstract

We present RKeOps version 2, a binder in R for the KeOps library which implements “kernel operations on the
GPU, with autodiff, without memory overflows”. The RKeOps package allows the user to seamlessly perform
fast and memory-efficient kernel computations, based on symbolic matrix operations, such as kernel matrix
reductions, convolutions or nearest neighbor search, involving large datasets (up to 107 points), on CPU
or GPU without any additional development cost. The main contribution of this work is to provide the
LazyTensor abstraction directly in R, allowing to write tensor operations similarly to R native syntax for
vector and matrix operations, greatly simplifying the user experience.

Keywords: Kernel operations, Matrix reduction, GPU, Symbolic matrix operations, Computational statistics

1 Introduction
In machine learning, statistics and many other fields, practical mathematical computations are performed
through dedicated tensor libraries. The data structure behind tensors are usually dense arrays. Although
versatile and well supported, this data structure can cause memory allocation issues especially on Graphical
Processor Unit (GPU) that do not contains more than few dozens Giga Bytes of Random Access Memory
(RAM). Thus, large arrays may not fit in memory or be impossible to process. KeOps1 [1], short for Kernel
Operations, is a C++/Python-based software library that allows to compute symbolic operations on very large
arrays whose entries are given by a mathematical formula. These operations are efficiently performed, with a
linear memory footprint on GPUs or CPUs. KeOps also supports automatic differentiation. The library can
be used in Python (with Numpy or PyTorch) and R through high-level binders.

We focus here on RKeOps2 version 2, the new R front-end for KeOps, now relying on PyKeOps — the Python
binder for KeOps — through the reticulate R package [2]. It has been extended to directly support tensor
operations through lazy evaluation. LazyTensor (presented below) may be understood as a convenient high
level interface to perform computation on symbolic matrices. Instead of writing directly a formula, the user
can now use standard R syntax with almost no boilerplate code.

∗amelie.vernay@umontpellier.fr
†benjamin.charlier@umontpellier.fr
‡ghislain.durif@ens-lyon.fr
§chloe.serre-combe@umontpellier.fr
1https://github.com/getkeops/keops
2https://github.com/getkeops/keops/tree/main/rkeops

1

mailto:amelie.vernay@umontpellier.fr
mailto:benjamin.charlier@umontpellier.fr
mailto:ghislain.durif@ens-lyon.fr
mailto:chloe.serre-combe@umontpellier.fr
https://github.com/getkeops/keops
https://github.com/getkeops/keops/tree/main/rkeops


2 Kernel operations as reductions
As data scientists, we often seek to perform reductions (Sum, Max, Argmin, LogSumExp, etc.) of large
tensors representing interactions between clouds of data points. Common examples of methods using such
operations include temporal or spatial convolutions, Gaussian processes, kernel methods. The main drawback
of these operations is their high computational complexity, both in time and memory storage requirement.

Consider the following example of a Gaussian convolution: given some source points y1, . . . , yj , . . . , yN ∈ RD

with associated weights b1, . . . , bj , . . . , bN ∈ R, and target points x1, . . . , xi, . . . , xM ∈ RD, we seek to evaluate
the Gaussian kernel product

ai ←
N∑

j=1
k(xi, yj) bj , i = 1, . . . , M (1)

where k(xi, yj) = exp
(
−∥xi − yj∥2

2
)

is a Gaussian kernel. A common practice is to compute all the elements
(k(xi, yj))i,j and to store them in a dense M × N matrix — usually called the kernel matrix — encoded
as an explicit array. The reduction is then performed as a matrix-vector product using some dedicated
linear algebra routine. Unfortunately, with a quadratic O(MN ) time complexity and memory usage, in high
dimension it becomes impossible to store the kernel matrix and to perform the sum reduction step.

3 Symbolic evaluation with RKeOps
3.1 Symbolic evaluations
Most of the time, when considering reductions involving interaction steps, we are more interested in the
evaluation of an operator on a given vector than in the explicit matrix evaluation of that operator. This is the
idea behind symbolic evaluation: providing that the entries of a matrix can be expressed as a mathematical
formula, intermediate computations can be written as a sequence of symbolic operations that are not directly
evaluated. The real evaluation is only made for the final computation, avoiding the computation and storage
of large matrices (of intermediate results).

3.2 The LazyTensor abstraction
RKeOps now provides a new data structure, called LazyTensor, to encode numerical arrays through the
combination of a symbolic mathematical formula and a list of data arrays. The LazyTensor objects can be
used to implement efficient algorithms on objects that are easy to define but impossible to store in memory,
through an array-like interface in an R-friendly syntax. For example, let x, y be both R matrix encoding 3D
point clouds with respectively M = N = 106 samples each, and let b be another R matrix storing a column
vector of the same size 106. Then, one can easily compute the reduction given by Equation (1) with RKeOps:
library(rkeops)
x_i <- LazyTensor(x, "i") # symbolic variables wrapping 3D data x
y_j <- LazyTensor(y, "j") # symbolic variables wrapping 3D data y
b_j <- LazyTensor(b, "j") # symbolic variables wrapping 1D data b
K_ij <- exp(- sum((x_i - y_j)ˆ2)) # symbolic Gaussian kernel (of dim M x N)
a_i <- sum(K_ij * b_j, index = "j") # actual R matrix with the results

In the previous example, we first define symbolic objects representing an arbitrary row of x (resp. y and
b), indexed by the letter "i" (resp. "j"). When K_ij is defined, no actual computation is performed:
RKeOps builds a symbolic formula encoded as a character string added to the attributes of the LazyTensor.
K_ij represents a 106 × 106 tensor but is never stored in memory. The sum reduction on the last line triggers
the real computation. The corresponding C++ or Cuda (for GPU3 computing) code is silently compiled,
executed and the result is stored in the new R matrix called a_i.

3KeOps works with Nvidia GPUs and Cuda.

2



The LazyTensor objects support a wide range of mathematical operations and reductions4. It is also possible
to work with complex number and symbolic complex operation by defining ComplexLazyTensor objects.
These are a generalization of the LazyTensor objects: the real and imaginary parts are dissociated and stored
in two contiguous columns, but the initial inner dimension is preserved.

4 Examples
In this section, we give some code snippets to show the syntax of RKeOps on two simple, yet useful, examples.

4.1 Gaussian convolution
We give here a full version of the standard Gaussian convolution (defined in Equation 1) in R15 with
bandwidth= 1 and weight vectors bj also in R15, using 106 data points:
library(rkeops)
N <- 10ˆ6; D <- 15 # dimensions
x <- matrix(rnorm(N*D), N, D) # data: x of dim (N,D)
y <- matrix(rnorm(N*D), N, D) # data: y of dim (N,D)
b <- matrix(rnorm(N*D), N, D) # data: b of dim (N,D)
lambda <- 1.0 # parameter: lambda

x_i <- Vi(x) # init x LazyTensor ("i" -> rows 1:N)
y_j <- Vj(y) # init y LazyTensor ("j" -> rows 1:N)
b_j <- Vj(b) # init b LazyTensor ("j" -> rows 1:N)
Pm_lambda <- Pm(lambda) # init lambda LazyTensor (Parameter)

res <- sum(exp(-Pm_lambda * sqdist(x_i, y_j)) * b_j, 'j')

4.2 Nearest Neighbor search
We use the LazyTensor syntax to compute K-nearest-neighbor search between two clouds of 3-dimensional
data points of size 106 using the ℓ1 distance (with K = 10):
library(rkeops)
N <- 10ˆ6; D <- 3 # dimensionss
x <- matrix(rnorm(N*D), N, D) # data: x of dim (N,D)
y <- matrix(rnorm(N*D), N, D) # data: y of dim (N,D)

x_i <- Vi(x) # init x LazyTensor ("i" -> rows 1:N)
y_j <- Vj(y) # init y LazyTensor ("j" -> rows 1:N)

K <- 10 # number of nearest neighbor

res <- argKmin(sum(abs(x_i - y_j)), K, 'j')

In the previous code, each row in the res array (of dimension N × K) contains the row index (i.e. "j" index)
of the K nearest neighbors in y for each row "i" in x.

5 Benchmark
We show here some benchmarking results about the computation of the Gaussian convolution (previously
introduced in subsection 4.1) computed with RKeOps and computed using R base code. Averaged computation

4The full list may be found at https://www.kernel-operations.io/keops/api/math-operations.html

3

https://www.kernel-operations.io/keops/api/math-operations.html


times across 100 repetitions are presented in Figure 1 for different numbers of points in the data:

N = 100, 1000, 5000, 10000, 50000, 100000, 200000.

RKeOps computations were made both on CPU and GPU, using 32bits (single precision) and 64bits (double
precision) floating point numbers. CPU computations were made using 16 cores of an Intel Xeon Gold 6142
processor, whereas GPU computations were made using an Nvidia A10 GPU chip.

R base code computation times are between 10 and 1000 times slower than RKeOps computations (and not
available for N > 10000 because too long). GPU computations are around 10 to 100 times faster than CPU
computations with RKeOps. Single precision computing is faster on GPU compared to double precision
computing but not on CPU5.

1e−01

1e+01

1e+03

1e+02 1e+03 1e+04 1e+05
data size N

av
er

ag
e 

tim
e 

(in
 s

ec
.)

keops_cpu_float32
keops_cpu_float64
keops_gpu_float32
keops_gpu_float64
R base

Figure 1: Gaussian convolution benchmark results.

Additional examples and benchmarks will be showcased during the presentation.

References
1. Charlier, B, Feydy, J, Glaunès, J A, Collin, F-D, and Durif, G 2021 Kernel operations on the

GPU, with autodiff, without memory overflows. Journal of Machine Learning Research, 22(74): 1–6.
URL http://jmlr.org/papers/v22/20-275.html

2. Ushey, K, Allaire, J, and Tang, Y 2023 Reticulate: Interface to ’python’.

5GPU cores are optimized to be faster with single-precision computing than with double-precision, which is not always the
case for CPU cores.

4

http://jmlr.org/papers/v22/20-275.html

	Introduction
	Kernel operations as reductions
	Symbolic evaluation with RKeOps
	Symbolic evaluations
	The LazyTensor abstraction

	Examples
	Gaussian convolution
	Nearest Neighbor search

	Benchmark
	References

