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Transcriptomic analyses have contributed greatly to a better understanding of the biological
processes involved in the evolution of complex and versatile diseases. However, bulk

transcriptomic analyses ignore the heterogenous contribution of diverse cell populations to
samples heterogeneity. Thus, computational deconvolution methods have been developed to
analyse the cellular composition of tissues. However, the performance of these algorithms is

limited in distinguishing between cell populations with very similar expression profiles, and we
hypothesised that integrating the covariance between genes could enhance the performance of
deconvolution algorithms for closely related cell populations. We therefore developed a new
deconvolution algorithm, DeCovarT, which takes into account the transcriptomic network

structure of each cell population. To do so, we represented the set of transcriptomic
interactions as a multivariate Gaussian distribution, assuming a sparse network structure

deduced from the precision matrix returned by the gLasso algorithm. Next, we reconstruct
the overall mixing profile by a generative model, in which we show, under reasonable

assumptions, that the law describing the overall expression profile conditional on the cell ratios
and purified expression profiles also follows a multivariate Gaussian distribution. The

maximum likelihood estimate (MLE) of the associated function, i.e. the cell ratios optimising
the probability of observing the observed transcriptomic distribution, is estimated in our

paper by first reparametrising the log-likelihood function into an unconstrained version and
then optimising it by consecutive iterations of the Levenberg-Marquardt algorithm. This
allows us to obtain an estimator that respects the simplex constraint and to derive the
corresponding asymptotic confidence bands. In addition to the introduction of a new

statistical modelling paradigm, we plan in our presentation to briefly review the standard
optimisation methods implemented in R with their specific features and main restrictions.

Notably, we benchmarked them on a toy example that highlights strong behavioural
differences in the context of constrained optimisation.

Mots-clefs : cellular deconvolution – gLasso – generative model – bulk RNA Sequencing – Levenberg-
Marquard – constrained optimisation

Introduction
The analysis of the bulk transcriptome provided new insights on the mechanisms underlying disease devel-
opment. However, such methods ignore the intrinsic cellular heterogeneity of complex biological samples,
by averaging measurements over several distinct cell populations. Failure to account for changes of the cell
composition is likely to result in a loss of specificity (genes mistakenly identified as differentially expressed,
while they only reflect an increase in the cell population naturally producing them) and sensibility (genes
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expressed by minor cell populations are amenable being masked by highly variable expression from major cell
populations).

Accordingly, a range of computational methods have been developed to estimate cellular fractions,
but they perform poorly in discriminating cell types displaying high phenotypic proximity. Indeed, most
of them assume that purified cell expression profiles are fixed observations, omitting the variability and
intrinsically interconnected structure of the transcriptome. In contrast to these approaches, we hypothesised
that integrating the pairwise covariance of the genes into the reference transcriptome profiles could enhance
the performance of transcriptomic deconvolution methods. We therefore introduce DeCovarT (Deconvolution
using the Transcriptomic Covariance), a new holistic probabilistic approach.

Objectives
Rationale of the new generative model
As in most traditional deconvolution models, we assume that the overall measured gene expression can be
reconstructed by summing the individual contributions of each cell population weighted by its frequency.
Formally, let X = (xgj) ∈ MRG×J the signature matrix representing the purified transcriptomic profiles of J
cell populations and p = (pji) ∈]0, 1[J×N the unknown relative proportions of cell populations in N samples,
then the linear relation relating the bulk expression (y = (ygi) ∈ RG×N

+ to the individual cell expression
profiles is given by the matrix product: y = X × p.

However, in real conditions with technical and environmental variability, the strict linearity of the
deconvolution does not strictly hold. Thus, an additional error term is usually added, assumed to follow a
homoscedastic zero-centred Gaussian distribution and with pairwise independent response measures while the
exogenous variables (here, the purified expression profiles) are supposed determined: this set of conditions
is referred to as the Gaussian-Markow assumptions. In that configuration, the MLE (maximum likelihood
estimate) that bast describes this standard linear model is equal to the ordinary least squares (OLS) estimate
(subfigure 1a).

In contrast to this canonical approach, in DeCovarT, we relax the exogeneity property by treating
exogenous variables X as random variables rather than determined measures, in a process close to the
approach of the DSection algorithm [1]. However, to our knowledge, we are the first to weaken the
independence assumption between observations by explicitly incorporating the intrinsic covariance structure
of the transcriptome of each purified cell population. To do so, we conjecture that the G-dimensional
vector xj characterising the transcriptomic expression of each cell population follows a multivariate Gaussian
distribution: xj ∼ NG(µ.j , Σj), with µ.j the mean purified transcriptomic expression and Σj the covariance
matrix, that we constrain to be positive-definite and of full rank and that is inferred using the output of the
gLasso algorithm [2] (subfigure 1b).

Derivation of the log-likelihood
First, we plugged-in the mean and covariance parameters ζj =

(
µ.j , Σj

)
inferred in the previous step. Then,

by letting ζ = (µ, Σ), µ = (µ.j)
j∈J̃

∈ MG×J , Σ ∈ MG×G the known parameters and p the unknown
cellular ratios, the conditional distribution y|(ζ, p) is the convolution of pairwise independent multivariate
Gaussian distributions, which is also a multivariate Gaussian distribution 1, deduced from the affine invariant
property of Gaussian distributions.

y|(ζ, p) ∼ NG(µp, Σ) with µ = (µ.j)
j∈J̃

, p = (p1, . . . , pJ) and Σ =
J∑

j=1
p2

jΣj (1)

From Equation 1, we readily compute the associated conditional log-likelihood (Equation 2):

ℓy|ζ(p) = C + log
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(a) Standard linear model representation.

(b) The generative model used for the DeCovart framework.

Figure 1: We use the standard graphical convention of graphical models, as depicted in RevBayes webpage.
For identifiability reasons, we conjecture that all variability arises from the stochastic nature of the covariates.

Iterated optimisation
The MLE is traditionally retrieved from the roots of the gradient of the log-likelihood. However, in our
generative framework, cancelling the gradient of Equation @ref(eq:loglikelihood-multivariate-gaussian) reveals
a non-closed form. Instead, iterated numerical optimisation algorithms can be used to proxy the roots, most
of them considering first or second-order approximations of the function to optimise.

The Levenberg-Marquardt algorithm bridges the gap between between the steepest descent method (first-
order) and the Newton-Raphson method (second-order) by inflating the diagonal terms of the Hessian matrix.
Away from the endpoint, a second-order descent is favoured for its faster convergence pace, while the steepest
approach is privileged close to the extremum, as it allows careful refinement of the step size. We use the
implementation available in the marqLevAlg package. In particular, it introduces a stringent convergence
criteria, the relative distance to the maximum (RDM), which sets apart extrema from spurious saddle points
[3].

We provide additional theoretical results, such as analytical formulas for the Gradient and the Hessian in
their constrained and unconstrained versions as well as simulation outputs in the vignette of the DeCovarT
Github webpage.
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